sábado, 13 de diciembre de 2008

LEY DE LEWIS

LEY DE LEWIS

Todos los átomos deben de ceder o aceptar electrones para cumplir con la LEY DE LEWIS, la cual establece que todos los átomos al combinarse debe de tener una configuración electrónica de un gas noble o en su defecto, 8 electrones en su último nivel de energía.

Estructura de Lewis

Diagrama de algunas estructura de Lewis de moléculas y átomos.
La Estructura de Lewis también llamada diagrama de punto o modelo de Lewis ,es una representación gráfica que muestra los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir.
El diagrama de Lewis se puede usar tanto para representar moléculas formadas por la unión de sus átomos mediante enlace covalente como complejos de coordinación. La estructura de Lewis fue propuesta por Gilbert Lewis, quien lo introdujo por primera vez en 1916 en su artículo La molécula y el átomo.
Las estructuras de Lewis muestran los diferentes átomos de una determinada molécula usando su símbolo químico y líneas que se trazan entre los átomos que se unen entre sí. En ocasiones, para representar cada enlace, se usan pares de puntos en vez de líneas. Los electrones desapartados (los que no participan en los enlaces) se representan mediante una línea o con un par de puntos, y se colocan alrededor de los átomos a los que pertenece.

Para desarrollar una formula química es necesario es necesario buscar cierta información como es electronegatividad fuerza en la que un átomo atrae electrones hacia su estructura esta fuerza se incremente de izquierda a derecha y de abajo hacia Riva sin considerar a los gases nobles, la otra información es la de las valencias que tiene cada elemento por lo que seguiremos la siguiente metodología.


*** PASOS A SEGUIR***


Escribe la formula condensada en la esquina superior, debajo de las formulas se escriben los valores de electronegatividad para cada elemento.
Anota las valencias
Determina quien es el más electronegativo son considerar al oxigeno, alrededor de tu atomo central distribuye a tus oxigenos lo más lo más simétricamente que te sea posible.
Distribuye los elementos restantes alrededor de los oxigenos, si es posible simétricamente enlaza todos los átomos de afuera hacia dentro considerando su valencia.











DETERMINACION DE ENLACE

ENLACE COVALENTE: Se lleva a cabo entre dos no metales, para estudiarlos se dividen en tres tipo.



NO POLAR

3 TIPOS DE ENLACE
POLAR


COORDINADA








Enlace IónicosEn los enlaces iónicos, los electrones se transfieren completamente de un átomo a otro. Durante este proceso de perder o ganar electrones cargados negativamente, los átomos que reaccionan forman iones. Lo iones cargados de manera opuesta se atraen entre ellos a través de fuerzas electroestáticas que son la base del enlace iónico.
Por ejemplo, durante la reacción del sodio con el cloro:
sodio (en la derecha) pierde su única valencia de electrones al cloro (a la derecha),

resultando en

un ión de sodio cargado positivamente (izquierda) y un ión de cloro cargado negativamente (derecha).
Una simulación de la reacción NaCl
Concept simulation - Reenacts the reaction of sodium with chlorine.
(Flash required)
Note que cuando el sodio pierde su electrón de valencia, se hace más pequeño, mientras que el cloro se hace más grande cuando gana una valencia de electrón adicional. Esto es típico de los tamaños relativos de iones a átomos. Después que la reacción tiene lugar, los iones cargado Na+ y Cl- se sujetan gracias a las fuerzas electroestáticas, formando así un enlace ionico. Los compuestos iónicos comparten muchas caractéristicas en común:
Los enlaces iónicos se forman entre metales y no metales,
Al nombrar compuestos iónicos simples, el metal siempre viene primero, el no metal segundo (por ejemplo, el cloruro de sodio),
Los compuestos iónicos se disuelven facilmente en el agua y otros solventes polares,
En una solución, los compuestos iónicos fácilmente conducen electricidad,
Los compuestos iónicos tienden a formar sólidos cristalinos con temperaturas muy altas.
Esta última característica es un resultado de las fuerzas intermoleculares (fuerzas entre las moléculas) en los sólidos iónicos. Si consideramos un cristal sólido de cloruro de sodio, el sólido está hecho de muchos iones de sodio cargados positivamente (dibujados a debajo como pequeñas esferas grises) y un número igual de iones de cloro cargados negativamente (esferas verdes). Debido a la interacción de los iones cargados, los iones de sodio y de cloro están organizados alternadamente como demuestra el esquema a la derecha. Cada ión de sodio es atraído igualmente por todos sus iones de cloro vecinos, y de la misma manera por la atracción del cloruro de sodio. El concepto de una molécula sola se vuelve borroso en cristales iónicos ya que el sólido existe como un sistema continuo. Las fuerzas entre las moléculas son comparables a las fuerzas dentro de la molécula, y los compuestos iónicos tienden a formar como resultado cristales sólidos con altos puntos de fusión.
Cl-1
Na+1
Cl-1
Na+1
Cl-1
Na+1
Cl-1
Na+1
Cl-1
Na+1
Cl-1
Na+1
Cl-1
Na+1
Cl-1
Na+1
Cl-1
Na+1
Cl-1
Na+1
Cristal de Cloruro de Sodio
Esquema de Cristal NaCl
Enlace CovalentesEl segundo mayor tipo de enlace atómico ocurre cuando los átomos comparten electrones. Al contrario de los enlaces iónicos en los cuales ocurre una transferencia completa de electrones, el enlace covalente ocurre cuando dos (o más) elementos comparten electrones. El enlace covalente ocurre porque los átomos en el compuesto tienen una tendencia similar hacia los electrones (generalmente para ganar electrones). Esto ocurre comúnmente cuando dos no metales se enlazan. Ya que ninguno de los no elementos que participan en el enlace querrán ganar electrones, estos elementos compartirán electrones para poder llenar sus envolturas de valencia. Un buen ejemplo de un enlace covalente es ese que ocurre entre dos átomos de hidrógeno. Los átomos de hidrógeno (H) tiene un electrón de valencia en su primera envoltura. Puesto que la capacidad de esta envolutura es de dos electrones, cada átomo hidrógeno 'querrá' recoger un segundo electrón. En un esfuerzo por recoger un segundo electrón, el átomo de hidrógeno reaccionará con átomos H vecinos para formar el compuesto H2. Ya que el compuesto de hidrógeno es una combinación de átomos igualados, los átomos compartirán cada uno de sus electrones individuales, formando así un enlace covalente. De esta manera, ambos átomos comparten la estabilidad de una envoltura de valencia.
Simulación del enlace covalente entre átomos de hidrógeno
(Flash required)
Ya que los electrones están compartidos en molécula covalentes, no se forman cargas iónicas. Por consiguiente, no hay fuerzas intermoleculares fuertes en los compuestos covalentes tal como las hay en las moléculas iónicas. Como resultado, muchos compuestos iónicos son gases o líquidos a temperatura ambiente en vez de sólidos como los compuestos iónicos en las moléculas covalentes que tienden a tener una atracción intermolecular más debil. Igualmente, al contrario de los compuestos iónicos, los compuestos covalentes existen como verdaderas moléculas.
Enlaces Múltiples: Para cada par de electrones compartidos entre dos átomos, se forma un enlace covalente único. Algunos átomos pueden compartir múltiples pares de electrones, formando enlaces covalentes múltiples. Por ejemplo, el oxígeno (que tiene seis electrones de valencia) necesita dos electrones para completar su envoltura de valencia. Cuando dos átomos de oxígeno forman el compuesto O2, ellos comparten dos pares de electrones, formando dos enlaces covalentes.
Las Estructuras de Puntos de Lewis: Las estructuras de puntos de Lewis son una taquigrafía para representar los electrones de valencia de un átomo. Las estructuras están escritas como el elemento del símbolo con puntos que representan los electrones de valencia. Abajo están las estructuras de Lewis para los elementos en los dos primeros períodos de la Tabla Periódica.
Las Estructuras de Puntos de Lewis

Las estructuras de Lewis también pueden ser usadas para mostrar el enlace entre átomos. Los electrones que se enlazan se colocan entre los átomos y pueden ser representados por un par de puntos, o un guión (cada guión representa un par de electrones, o un enlace). Abajo están las estructuras de Lewis para el H2 y el O2.
H2
H:H
or
H-H
O2
Enlaces Polares y No-Polares En realidad, hay dos sub tipos de enlaces covalente. La molécula H2 es un buen ejemplo del primer tipo de enlace covalente el enlace no polar. Ya que ambos átomos en la molécula H2 tienen una igual atracción (o afinidad) hacia los electrones, los electrones que se enlazan son igualmente compartidos por los dos átomos, y se forma un enlace covalente no polar. Siempre que dos átomos del mismo elemento se enlazan, se forma un enlace no polar .
Un enlace polar se forma cuando los electrones son desigualmente compartidos entre dos átomos. Los enlaces polares covalentes ocurren porque un átomo tiene una mayor afinidad hacia los electrones que el otro (sin embargo, no tanta como para empujar completamente los electrones y formar un ión). En un enlace polar covalente, los electrones que se enlazan pasarán un mayor tiempo alrededor del átomo que tiene la mayor afinidad hacia los electrones. Un buen ejemplo del enlace polar covalente es el enlace hidrógeno - oxígeno en la molécula de agua.
Las moléculas de agua contienen dos átomos de hidrógeno (dibujados en rojo) enlazados a un átomo de oxígeno (en azul). El oxígeno, con seis electrones de valencia, necesita dos electrones adicionales para completar su envoltura de valencia. Cada hidrógeno contiene un electrón. Por consiguiente el oxígeno comparte los electrones de dos átomos de hidrógeno para completar su propia envoltura de valencia, y en cambio, comparte dos de sus propios electrones con cada hidrógeno, completando la envoltura de valencia H.
Enlace polar covalente simulado en una molécula de agua
La principal diferencia entre el enlace H-O en el agua y el enlace H-H, es el grado de los electrones compartidos. El gran átomo de oxígeno tiene una mayor afinidad hacia los electrones que los pequeños átomos de hidrógeno. Ya que el oxígeno tiene una atracción más fuerte en los electrones que se enlazan, el electrón ocupado anteriormente conduce a una desigual participación.
Los DipolesYa que los electrones de valencia en las moléculas de agua ocupan más tiempo alrededor del átomo de oxígeno que los átomos de hidrógeno, la parte de oxígeno de la molécula desarrolla una carga parcial negativa (debido a la carga negativa en los electrones). Por la misma razón, la parte de hidrógeno de la molécula desarrolla una carga parcial positiva. Los iones no se forman, a pesar de que la molécula desarrolla en su interior una carga eléctrica parcial llamada un dipolar. El dipolo de agua está representado por una flecha en la animación (ver más arriba) en la cual la cabeza de la flecha apunta hacia la parte densa final (negativa) del electrón del dipolo y el otro electrón se ecuentra cerca de la parte delgada final (positiva) al otro lado de la molécula.